Animal species in drug development with emphasis on preclinical safety

Robert A. Ettlin,

Dr. med., FIATP – FIATS – ERT

Ettlin Consulting

CH-4142 Muenchenstein, Switzerland

robert.ettlin@ettlin-consulting.com

Disclaimer, copyrights, etc.

- R.A. Ettlin and Ettlin Consulting are committed to high standards, but cannot accept any responsibility for the accuracy of information provided. Also, the presentation prepared for workshops etc. some years ago may contain information, for which updates are available. Kindly verify the information by consulting e.g. textbooks on toxicology, the respective regulations and/or other publications according to your needs
- There may be a few *duplications* regarding similar information also used for other presentations
- An effort was made to reduce the number of potentially *copyrighted* material, but reference to published material is unavoidable in this kind of presentation. Where known, the source is appropriately shown. Should nevertheless any picture or graph violate an existing copyright, please contact the author for corrections at one of the addresses shown on the title slide

Overview

- Use of animals
- Regulations regarding species selection
- Species similarities and differences
- Commonly used species in toxicology
- Humans
- Adverse drug reactions in humans
- Extrapolation of animal data
- Species selection
- Conclusions

Overview

Use of animals

- History
- Current
- Regulations regarding species selection
- Species similarities and differences
- Commonly used species in toxicology
- Humans
- Adverse drug reactions in humans
- Extrapolation of animal data
- □ Species selection
- Conclusions

History

Glimpses on history of animal use

Aristotle (384-322 BC) and Erasistratus (304-258 BC):

Experiments on living animals

- Louis Pasteur in the 1880s: Anthrax infection of sheep for proof of germ theory
- Ivan Pavlov in the 1890s: Classical conditioning on dogs
- □ Insulin isolated from dogs in 1922
- Russian dog Laika orbited the earth in 1957

History

Glimpses on history of toxicology

- Claude Bernard (1813-1878): animal experiments are "entirely conclusive for toxicology and hygiene of man"
- □ 1937 Sulfanilamide caused over 100 deaths → laws for safety testing of drugs on animals before marketing → US FDA
- 1955 Delaney Amendment regarding carcinogenicity
- In the 1960s, thalidomide caused over 10'000 deformed children, → further safety testing on pregnant animals required

Use of animals

History

Species required over time

Current

Experimental animals used in 2008

EUROPEAN COMMISSION

EU (27) population: ~ 500 mio.

REPORT FROM THE COMMISSION TO THE COUNCIL AND THE EUROPEAN PARLIAMENT

Sixth Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union SEC(2010) 1107

Total number of animals used: 12 millions

Use of animals

Current

Animals used in 2008 in the EU

Potential or actual 3.9 contaminents in the Products/ 3.8 general environment which substances used or 3.10 Other toxicological intended to be used mainly do not appear in other or safety evaluations as additives in food for columns 21.45% 6.32 animal consumption Toxicology and other 5.20% Products/ 3.7 safety evaluations substances used or intended to be used mainly as additives in food for human consumption 0.60% 3.2 Products/ 3.6 Products/ substances or devices for substances used or human medicine and intended to be used mainly dentistry and for veterinary as cosmetics or toiletries medicine 0.19% 50,81% ~ 0.5 mio 3.5 Products/ substances used or intended to be used mainly in the household REPORT FROM THE COMMISSION TO THE 0.41% COUNCIL AND THE 3.4 Products/ EUROPEAN PARLIAMENT substances used or Products/ 3.3 Sixth Report on the Statistics on the Number of Animals intended to be used mainly substances used or used for Experimental and other Scientific Purposes in in industry intended to be used mainly the Member States of the European Union - SEC(2010) 7,91 in agriculture 1107 7.11%

Purposes for using experimental animals

Current

Type of safety testing

Animal species commonly used in regulatory toxicology

Study type	Primary species	Alternatives		
Acute toxicity*	Rodents (rat, mouse)			
Multidose toxicity	Rodent (especially rat) Non-rodent (esp. dog)	Mouse, monkey, minipig		
Carcinogenicity	Rodents (rat, mouse)			
In vivo mutagenicity	Mouse			
Development / reproductive tox	Rat, rabbit	Mouse, hamster, monkey		
Immunotoxicity	Mouse, guinea pig	Rat		
* Today done only for specific reasons				
Animal species	e	13		

Rodent strains frequently used in toxicology studies

Species	Strain	Characteristics (depending on breeder)
Rat	SD	Outbred, albino, large database Can easily be made obese Tumors (especially mammary, thyroid, pituitary, etc.), age-related degenerations (especially kidney)
	Wistar	Outbred, albino, good as 2 years survival Tumors (especially mammary, thyroid, etc.)
	Fischer 344	Inbred, albino, small Tumors (especially leukemia, pituitary, thyroid, etc.)
Mouse	CD-1	Outbred, albino Tumors (especially liver), amyloidosis
	C57BL	Inbred, black
	BLAB/c	Inbred, albino, testicular atrophy

C

Overview

Use of animals

- Regulations regarding species selection
 - General and carcinogenicity testing
 - Reproductive toxicity testing
 - Testing of biotechnology products
- Species similarities and differences
- Commonly used species in toxicology
- Humans
- Adverse drug reactions in humans
- Extrapolation of animal data
- Species selection
- Conclusions

Regulations

General and carcinogenicity testing

M4S (R2): Common Technical Document Nonclinical Summaries and Organization of Module 4

Mouse Rat Hamster Other rodent Rabbit Dog Non-human primate Other non-rodent mammal Non-mammals

General statement in regulations

Use the relevant species

ICH M3 (R2)

Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals

2 mammals, of which one non-rodent

ICH M4S (R2)

CTD: Nonclinical Summaries and Organization / Mod 4

- Species- or gender-related differences
- Interspecies comparison of metabolism

Regulations

S1B Testing for *carcinogenicity* of pharmaceuticals 4.2.1 Choice of species for a long-term carcinogenicity study

The species selected should be appropriate, based on considerations that include the following:

- (a) Pharmacology
- (b) Repeated-dose toxicology
- (c) Metabolism (see also Guidelines S1C and S3A)
- (d) Toxicokinetics)TK) (see also Guidelines S1C, S3A, S3B)
- (e) Route of administration

In the absence of clear evidence favoring one species, it is recommended to select the rat

Regulations

Reproductive toxicity testing

S5 (R2): Detection of toxicity to reproduction and male fertility

- Studies should be conducted in *mammalian species…* Reasons for using *rats* as the predominant rodent species are
 - o Practicality
 - Comparability with results from toxicity studies
 - Large amount of background knowledge
- Embryotoxicity testing

A second mammalian species generally required, the rabbit preferred as "non-rodent", because of

- Extensive background knowledge
- Availability
- Practicality

S5 (R2): Note 5 (2.1) Selection of species and strains - 2

All species have their disadvantages, for example:

- Rats: susceptibility to sexual hormones; unsuitable for dopamine agonists due to dependence on prolactin as the primary hormone for early pregnancy; highly susceptible to non-steroidal antiinflammatory drugs in late pregnancy
- Mice: fast metabolic rate; stress sensitivity; malformation clusters (which occur in all species) particularly evident; small fetuses
- Rabbits: susceptibility to some antibiotics and to disturbance of the alimentary tract; clinical signs can be difficult to interpret; often lack of kinetic and toxicity data
- Guinea pigs: susceptibility to some antibiotics and to disturbance of the alimentary tract; long fetal period; often lack of kinetic and toxicity data; insufficient historical background data

S5 (R2): Note 5 (2.1) Selection of species and strains - 3

Continued: All species have their disadvantages, for example:

- Domestic and/or *minipigs:* malformation clusters with variable background rate; large (compound, housing requirements), insufficient historical background data
- Ferrets: seasonal breeder unless special management systems used; insufficient historical background data
- Hamsters: sensitive to intestinal disturbance; overly sensitive teratogenic response to many chemicals; small fetuses, experimental difficulties (e.g. intravenous i.v. route difficult; can hide doses in cheek pouches; can be very aggressive)
- Dogs: variable breeders; inbreeding factors; insufficient historical background data also regarding reproduction
- Non-human primates: PK can differ from humans as in other species; insufficient historical background data; often the numbers used are too low

S6 (R1): Biotechnology-derived pharmaceuticals - 1

- Appropriate nonclinical species based on:
- □ Binding to
 - Target: *in vitro* receptor binding studies
 - Off-target: tissue cross reactivity
- Pharmacodynamics PD (binding ≠ activity) An animal species without the desired epitope may still be of some relevance in case of comparable tissue cross-reactivity
- → Non-human primates (NHP) often the only relevant species

S6 (R1): Biotechnology-derived pharmaceuticals - 2

- Toxicity studies in non-relevant species are discouraged.
- lf
- □ No relevant species can be identified or
- For studies difficult to perform in NHP, such as carcinogenicity and reproductive toxicity tests Consider the use of:
- Homologous (surrogate) test protein Potential problems: may not be predictive, impurities and contaminants, cost and time
- □ *Transgenic animals* with the human receptor or epitope

Overview

- Use of animals
- Regulations regarding species selection
- Species similarities and differences
 - General
 - Anatomy
 - Physiology and biological behavior
 - Receptors and epitopes
 - Toxicokinetics
- Commonly used species in toxicology
- Humans
- Adverse drug reactions in humans
- Extrapolation of animal data
- Species selection
- Conclusions

General

Millions of years ...

Wikipedia http://de.wikipedia.org/wiki/Stammesgeschichte_des_Menschen. Accessed in January 2021

... separate humans from test animals

Species differences – Number of articles

Journal	Species differences	# articles in total	Since
Tox Path	32	2580	1983
J Tox Path	56	> 500	1998
Exp Tox Path	558	1566	1992

Number of articles based on searches in corresponding website in 2012 Total number of articles based on

- Searches in PubMed for Tox Path and Exp Tox Path
- Estimate for J Tox Path (not in PubMed)

Prediction / extrapolation – Number of articles

Journal	Prediction	Extrapo- lation	# articles in total	Since
Tox Path	222	249	2580	1983
J Tox Path	18	12	> 500	1998
Exp Tox Path	76	70	1566	1992

Number of articles based on searches in corresponding website in 2012

Total number of articles based on

- Searches in PubMed for Tox Path and Exp Tox Path
- Estimate for J Tox Path

Species differences

General

Animal models useful?

Species differences

General

Animal models useful?

See the similarities

Which liver is human, which rat?

See the similarities

Human

Understand the differences

Species differ with regard to:

- 1. Anatomy
- 2. Physiology (especially hormones) and biological behavior (especially tumors)
- 3. Receptors and epitopes of relevance for toxicity, including pharmacokinetics (PK) and PD, especially for biotherapeutics
- 4. TK (ADME)
- 5. Etc. such as "sensitivity"

Animal size influences ...

Body surface area: Temperature control and water management Doubling of the bodyweight \rightarrow 180% \clubsuit metabolic rate \rightarrow 185% \clubsuit life span □ Sample size and number: **Biochemical analysis, organs** Manipulations Drug requirements (also critical: group size)

1. Anatomy

What is an equivalent dose?

Spacias	Weight	Surface	Do	se in mg per …	
Species	kg	cm ²	kg bw	Individual	Surface cm ²
Mouse	0.020	46	100	2	0.043
Rat	0.200	325	100	20	0.061
Dog	12.000	5770	100	1200	0.207
Human	70.000	18000	100	7000	0.388

http://toxicology.usu.edu/660/html/testing.htm Website no longer accessible

e

Test material for various species

	Mouse	Rat	Dog	Cynomolgus
Body weight (BW)	30 g	250 g	9 kg	2.5 kg
Test group size (#/sex)	10	10	4	4
Test material (approx., g)	~ 45	~ 360	~ 5100	~ 1420

28 day study

4 test groups at doses of 0, 25, 100 and 400 mg/kg/d

+ 20% spare material

After Toxicology Testing Handbook 'Principles, Applications, and Data Interpretation' Editors. D. Jacobson-Kram and K. A. Keller - CRC Press; 2nd edition

1. Anatomy

Anatomical particularities of rodents

- Forestomach With squamous epithelium Harderian gland Accessory tear gland for 3rd eye lid **Zimbal's gland** Sebaceous gland around external ear canal
- Preputial gland Similar to sebaceous gland

Particularities of the rodent endocrine system

- Less serum *binding* of hormones
- Estrogen/progesterone ratio 1:100(-200) in rodents vs. 1:1 in women
- Different senescence: progesterone dominance in old rats vs. waning system in women
- Prolactin with trophic effect on rat mammary gland vs. lactation maintaining effect in women
- High susceptible to disturbance of hormonal regulation, e.g. luteinizing hormone (LH) leads to hyperplastic/"neoplastic" Leydig cells (LC; not in man: Klinefelter)

Reproductive parameters in various species

Species	Puberty	Sexual Cycle	Gestation length	Litter size	Litters / year	Age at weaning
MOUSE	6-8 (9) wks	4-7 (5) days	19-20 days	6-10 (8)	4-8 (5)	19-21 days
RAT	7-11 (12) wks	3-8 (5) days	21-23 (22) days	6-10	5-6	20-22 days
HAMSTER	4-6 (8-9) wks	4-7 (4) days	15-17 (169) days	16 (5-8)	5-6	3-4 weeks
GUINEA PIG	F: 4 wks M: 8-9 wks	13-20 (14-16) days	59-74 (63) days	1-7 (3-4)	5	2 weeks
RABBIT	4-5 (9) months	14-16 days	28-36 (30-33) days	1-16 (7-8)	5-6	6-8 weeks
FERRET	9-12 months	seasonal	42 days	6-10	1-2	8 weeks
DOG	9-15 months	3 weeks, twice/year	58 - 66 (63) days	3-8	1.5 - 2	6-8 weeks

After: Chapter 13: The Biology of Laboratory Animals - A Hem Laboratory Animal Science: A Hem, D M Eide, E Engh and A Smith (eds) January 2001, ISBN 82-7725-117-3. Partly revised in September 2010

Mean bile flow

Species	Bile flow (µL/min/kg BW)
Mouse	78
Rat	30 - 150
Guinea pig	200
Rabbit	90
Pig	9
Dog	4 – 10
Monkey	10
Human	1.5 - 15

Martinez M et al Adv Drug Deliv Rev 2002, 54:825-850

Species differences

2a. Physiology

Glomerular filtration rates

Species	ml/min/kg BW
Mouse	10
Rat	8.7
Rabbit	4.8
Dog	4
Monkey	2
Human	1.8

Tibbitts J. Toxicol Pathol 2003, 31 Suppl:17-24

Animal species

Species differences

2a. Physiology

Serum proteins (g/dl)

	Rat	Rabbit	Dog	Human
Total protein	6.5	7.0	5.8	7.8
Albumin	2.1	4	3.5	4.9
Tibbitts J Toxicol Pathol 2003, 31 Suppl:17-24				

Tumor biology in rodents

- High spontaneous incidence in endocrine and some other organs (liver, lung, hematopoietic system, etc.)
- □ Often at *multiple* sites
- Easy to induce, e.g. by subcutaneous irritation, including e.g. foreign body reaction
- Tend to be less aggressive/malignant, e.g. few metastases

Factors influencing lung toxicity

Animal	% identity with human HVR TLR4	LPS sensitivity	Intravascular macrophages	Nitric oxide production
Mouse	48	Low	No	+++
Rat	48	Low	No	+++
Rabbit	57	Intermediate	No	++
Dog	n.a.	Low	No	++
Pig	n.a.	High	Yes	++
NHP	95	Intermediate	No	+
Human	100	Intermediate	No	+
HVR TLR4 : LPS: <i>n.a. :</i>	Hypervariable region o Lipopolysaccharide <i>Not available</i>	f Toll-like recepto	r 4	

Animal models of acute lung injury. Matute-Bello G, Frevert CW, Martin TR. J Physiol Lung Cell Mol Physiol 2008, 295(3): L379-99

Family	Subfamily	Humans	Mouse	Rat	Dog	Wouke,
CYP1	A	1A1, 1A2	1A1, 1A2	1A1, 1A2	1A1, 1A2	1A1, 1A2
CYP2	B A	1B1 2A6, 2A7, 2A13	1B1 2A4, 2A5, 2A12, 2A22	1B1 2A1, 2A2, 2A3	1B1 2A13, 2A25	1B1 2A23, 2A24
	В	2B6, 2B7	2B9, 2B10	2B1, 2B2, 2B3	2B11	2 B 17
	C	2C8, 2C9, 2C18, 2C19	2C29, 2C37, 2C38, 2C39, 2C40, 2C40, 2C44, 2C50, 2C54, 2C55	2C6, 2C7*, 2C11*, 2C12*, 2C13*, 2C22, 2C23	2C21, 2C41	2C20, 2C43
	D	2D6, 2D7, 2D8	2D9, 2D10, 2D11, 2D12, 2D13, 2D22, 2D26, 2D34, 2D40	2D1, 2D2, 2D3, 2D4, 2D5, 2D18	2D15	2D17* 2D19* 2D29* 2D30* 2D42*
	E	2E1	2E1	2E1	2E1	2E1
3	A	3A4, 3A5, 3A7, 3A43	3A11, 3A13, 3A16, 3A25, 3A41, 3A44	3A1/3A23, 3A2*, 3A9*, 3A18*, 3A62	3A12, 3A26	3A8

Enzyme diversity of the major CYP families

Thesis 2006: Species and strain differences in drug metabolism in liver and intestine *M Martignoni* ISBN: 9036727138

Some species-specific metabolic deficiencies

- Rat: deficiency in the N-hydroxylation of aliphatic amines
- Dog: inability to acetylate aromatic amines
- Guinea pig: deficiency in N-acetylation and unable to form N-acetylate-S-substituted cysteines
- □ *Pig:* deficiency in most sulfation reactions

Interspecies Differences in Physiology and Pharmacology: Extrapolating Preclinical Data to Human Populations M. N. Martinez In: Preclinical drug development. Mark C. Rogge, David R. Taft (eds) 2nd ed. 2010, pp 35-70 Informa Healthcare USA, Inc.

Phenol conjugation (phase 2 reactions)

	Sulfate (S)	Glucuronic acid (G)	Ratio S/G
Human Old world monkeys	80	12	7
New world monkeys	25	50	0.5
Rat / Mouse	45	40	1.13
Pig	2	95	0.02

V. Beasley. International Veterinary Information Service (www.ivis.org), Ithaca, NY, USA No longer accessible under http://www.ivis.org/advances/beasley/appc/ivis.pdf

Free fraction of drugs in blood

Drug	Mouse	Rat	Dog	Monkey	Human
Cefpiramide	0.56	0.54	0.70	0.068	0.037
Cefoperazone	0.854	0.744	0.744	0.161	0.176
Cefmetazole	0.65	0.56	0.75	0.19	0.15
Diazepam		0.137	0.04		0.032
Quinidine	0.363	0.324			0.13
Valproic acid	0.881	0.366	0.215		0.052
Meloxicam	0.04	0.003			0.004
CIPB	0.65	0.25	0.15	0.05	0.03
Etodolac	0.052	0.007	0.017	0.012	0.008
Tolrestat	0.04	0.017	0.02	0.014	0.007
Pelrinone	0.78	0.28	0.20	0.21	0.11
Benoxaprofen	0.011	0.007	0.008	0.004	0.002

After: Cayen MN *in* Human Risk Assessment: The Role of Animal Selection and Extrapolation. Philadelphia, PA: Taylor & Francis / Mahmood I. J Clin Pharmacol 2000 40:1439-1446

NSAID Plasma half-life in 4 species

NSAID	Rat	Dog	Monkey*	Human
Piroxicam	6 (m), 16 (f)	45	5	45
Indomethacin	4	0.3	0.3	2
Naproxen	5	35	1.9	13.9
Ibuprofen	1	2.5		3
Phenylbutazone	6	6	7	72
Fenprofen	8	4	0.3	2.5
Sulindac	4			8

* No details regarding species

V. Beasley. International Veterinary Information Service (www.ivis.org), Ithaca, NY, USA No longer accessible under http://www.ivis.org/advances/beasley/appc/ivis.pdf

Overview

- Use of animals
- Regulations regarding species selection
- Species similarities and differences
- Commonly used species in toxicology
 - Rodents: Rat, mouse, hamster, guinea pig
 - Non-rodents: rabbit, ferret, dog, pig, monkey
- Humans
- Adverse drug reactions in humans
- Extrapolation of animal data
- Species selection
- Conclusions

Edited by Shayne C. Gad

Animal Models in Notes in Notes in

Second Edition

Taylor & Francis Taylor & Francis Group

Information on animal models

Animal Models in Toxicology 2nd edition, 2007 Shayne C. Gad (editor)

Taylor & Francis Group Boca Raton London New York

Also available as e-book

Handbook of Toxicology

Handbook of Toxicology Michael J Derelanko, Mannfred A Hollinger Taylor & Francis Inc CRC Press 2002

> Especially Chapter 1 "Laboratory Animal Management"

Caveat

- Within one species significant differences can exist between different strains, different breeders and different laboratories (husbandry, etc.), etc.
- Comparisons of figures and statements from different sources need to be done with caution: methods, circadian rhythms, etc.

Addressed for each species are ...

- Some biological key parameters in comparison with humans
- □ If appropriate:
 - Comparison with alternative species
 - Particular use
- Some characteristics including advantages and disadvantages
- For common spontaneous lesions (depend on many variables: see appendix (for illustration and not comprehensive)

Biology	Rat	Human
Weight	100-700 gr	60-110 kg
Life span	2.5-3 years	60-90 years
O ₂ consumption	0.76 ml/g/hr	0.4 ml/g/hr
Heart rate	300-390/min	60-90/min
BP	125/85 mmHg	120/80 mmHg
Puberty	40-60 days	12-16 years
Gestation	21-23 days	40 weeks
Weaning	21 days	> 6 months
Estrus cycle	4-5 days	28 days

Rat (also valid for the mouse)

Advantages

Commonly used \rightarrow large historic database Small size

Minimal housing space

Prolific

- Short gestation
- Short lactation
- Short life span
- Omnivorous
 - Dry diet acceptable
- Dosing by multiple routes
- No emetic reflex
- Inexpensive
 - Low maintenance cost
- Docile
- Intelligence

Often similar metabolism of xenobiotics

Disadvantages

Anatomic differences

- Lack of gallbladder (only rats)
- Yolk-sac placenta
- Multiple mammae over body surface
- Fur covered
- Thinner stratum corneum
- No bronchial glands

Physiological differences

- Estrus and menstrual cycles
- Multiparous
- Hematology
- Different intestinal flora
- High metabolic rate (especially mice)
- Obligatory nose breather
- Concentrated urine
- Limited hypersensitivity response

After Animal Models in Toxicology, 2nd edition, 2007, Shayne C. Gad (editor). Taylor & Francis Group, Boca Raton London New York, P 907

Animal species

e

Rat (also valid for the mouse)

Disadvantages

Aging

- Degenerative lesions
- Proliferative lesions (prone also for induced proliferations

Metabolic differences

- Metabolism of xenobiotics
- Purines to allantoin
- **\square** High β-glucuronidase activity

Nutritional differences

- Mineral requirements
- Vitamin requirements
- Ascorbic acid biosynthesis
- Histidine biosynthesis

Disadvantages

Behavioral differences

- Nocturnal
- Coprophagy
- Cannibalism

Specific maintenance requirements

- Temperature and humidity control
 Difference in thermoregulation
- Noise control

Strain differences

Calabrese E J Principles of animal extrapolation Wiley, New York, 1983

Biology	Mouse	Human
Weight	20-40 gr	60-110 kg
Life span	1-3 years	60-90 years
O ₂ consumption	1.69 ml/g/hr	0.4 ml/g/hr
Heart rate	320-800/min	60-90/min
BP	145/105	120/80 mmHg
Puberty	50-60 days	12-16 years
Gestation	17-21 days	40 weeks
Weaning	16-21 days	> 6 months
Estrus cycle	4-5 days	28 days

Mice vs. rats

Very small

- Low compound requirement
 May limit experimental procedures
- Very high metabolic rate ("fast ADME")
- Less easy to handle than rats
- □ Availability of genetically modified mice
- Urinary excretion
 - High glomerular filtering surface per bw (> rat)
 - Urine about four times as concentrated as the highest human concentrations
- □ Stressed by noise
- □ Single housing good, but more expensive

Biology	Hamster	Human
Life span	2-3 years	60-90 years
Weight	100-135 gr	60-110 kg
O ₂ consumption	2.3 ml/g/hr	0.4 ml/g/hr
Heart rate	300-600/min	60-90/min
BP	Systolic 110 mmHg	120/80 mmHg
Puberty	4-6 (f), 6-7 (m) weeks	12-16 years
Gestation	16 days	40 weeks
Weaning	21-28 days	> 6 months
Estrus cycle	4 days	28 days
Animal species	e	62

Hamsters

□ Strain

- o > 80% Syrian hamsters
- o < 20% Chinese hamsters</p>

Formerly used for carcinogenicity testing because of *low spontaneous tumor* incidence and relatively short life span (as other rodents)

Preferably single housing

Biology	Guinea pig	Human
Weight	600-1000 g	60-110 kg
Life span	2-6 years	60-90 years
O ₂ consumption	0.76 ml/g/hr	0.4 ml/g/hr
Heart rate	240-280/min	60-90/min
BP	75/45 mmHg	120/80 mmHg
Puberty	45-70 days	12-16 years
Gestation	59-70 days	40 weeks
Weaning	21-28 days	> 6 months
Estrus cycle	16-18 days	28 days

Guinea pigs

- Relatively expensive
- Small, easy to handle, but susceptible to noise (might refuse to drink and eat)
- □ No readily accessible peripheral veins for
 - i.v. injections and blood collection
- Most commonly used: short-haired English variety, especially Hartley strain
 Relatively new: *hairless strain* (Charles River Laboratories) for dermal studies

Guinea pigs

Main use: Immunology

- Immediate type hypersensitization (systemic immune response often exaggerated)
- Delayed type dermal sensitization
- Photosensitization
- Pulmonary sensitization
- Host-resistant assay (instead of mice)

Further uses – 1

- Audiology including *ototoxicity* caused e.g. by NSAID or antibiotics
- Ocular toxicity: cataractogenesis by dermal and oral application
- Infectious diseases (sensitive to human tuberculosis)

Colitis model (induction by carrageenan)

- Teratology
- □ Inhalation toxicology

Guinea pigs

Rodents

Further uses – 2

Carcinogenicity testing Low incidence of spontaneous neoplasms

Compared to rats relatively insensitive to certain carcinogens such as aromatic amines (low metabolic activation?)

Biology	Rabbit	Human
Weight	4-6 kg	60-110 kg
Life span	5-13 years	60-90 years
O ₂ consumption	0.5-0.85 ml/g/hr	0.4 ml/g/hr
Heart rate	120-280/min	60-90/min
BP	110/75 mmHg	120/80 mmHg
Puberty	3-8 months	12-16 years
Gestation	29-35 days	40 weeks
Weaning	4-6 weeks	> 6 months
Estrus cycle	Induced	28 days

Non-rodents

Rabbits – 1

- Relatively inexpensive (compared to cats, dogs, and monkeys)
- Easy to house and handle
- □ Small
- □ Hardy, clean
- □ SPF rabbits difficult/impossible to obtain
 - Often subclinical infections with seasonal variation
 - Pasteurella infections frequent in various organs
Rabbits – 2

 □ Intestinal microflora more like in men (compared to rodents and guinea pigs), but easily disturbed (→ diarrhea, etc.)
 □ Very sensitive to certain antibiotics
 □ Very variable gastric emptying (20 min – 20 hours!)
 → for oral studies not well suited

□ Sensitive to heat

Rabbits – Use

Teratology

- Relatively sensitive to teratogens
- Short gestation (similar to rodents)
- Fetuses large enough for examination
- Immunology: good antibody production
- Various other studies including
 - Dermal, mucosal
 - Ocular
 - Implant testing

Rabbits: Dermal studies

In comparison to human skin: thinner stratum corneum

- → Higher dermal absorption
- → Shorter exposure of skin surface, but temporarily higher concentrations within rabbit skin
- → Systemic exposure markedly different from that of men

Biology	Ferret	Human
Weight	800-1600 gr	60-110 kg
Life span	5-8 years (?)	60-90 years
O ₂ consumption	(0.7 ml/g/hr)	0.4 ml/g/hr
Heart rate	200-380/min	60-90/min
BP	150/115 mmHg	120/80 mmHg
Puberty	8-10 weeks	12-16 years
Gestation	39-46 days	40 weeks
Weaning	6 weeks	> 6 months
Estrus cycle	Seasonal, induced ovulation	28 days

Ferrets – 1

- Small non-rodent species (males up to 1.6 kg, females up to 800 gr)
- Seems to be increasingly used in toxicology (?)
- Particularly in the US also used as pets Relatively inexpensive
- Small number of vendors
- Not much experience / historical data available

Ferrets

Ferrets – 2

- □ Heterogeneity
- "Cleanness" questionable
- For adults individual caging needed
- Sexually inactive at 6-10 hrs light to 18 -14 hrs dark (simulate early winter)
- □ Sexually mature at 6 8 months

Ferrets – 3

Cave heat stress particularly during transport Can lead to stress-related gastric ulcers Infections: prone for influenza and pneumonitis (can be used as model for influenza and influenza vaccine testing) Estrus-associated aplastic anemia. Can be lethal because of hemorrhage

Biology	Dogs	Human
Weight	10-12 kg	60-110 kg
Life span	12.5 years	60-90 years
O ₂ consumption	0.36 ml/g/hr	0.4 ml/g/hr
Heart rate	120-150/min	60-90/min
BP	120/60 mmHg	120/80 mmHg
Puberty	6-12 months	12-16 years
Gestation	60.65 days	40 weeks
Weaning	5-8 weeks	> 6 months
Estrus cycle	Variable (>70-180 days)	28 days

Dogs – 1

- Often beagle dogs
- Expensive
- □ Sometimes short in supply and of "low" quality
- Beagle males up to 12 (+) kg, females up to 11 (+) kg. BW variation
 - Much test compound needed
- □ Large enough for investigative procedures
- Puberty at 6-12 months of age
- Easy to handle, but noisy

Dogs – 2

- Group housing. Exercise and housing requirements in some countries
- Easy vomiting
- Do not tolerate (well)
 - o i.v. injection of Tween 20 and cremophor
 → Histamine release reaction ("allergy")
 - Morphine-like compounds
 - NSAID (gastric toxicity)
 - Positive inotropic agents (prolonged tachycardia not well tolerated)

Biology	Minipig	Human
Weight	15-40 kg	60-110 kg
Life span	15-17 years	60-90 years
O ₂ consumption	No data	0.4 ml/g/hr
Heart rate	70-85/min	60-90/min
BP	100/60 mmHg	120/80 mmHg
Puberty	3-5 months	12-16 years
Gestation	114 days	40 weeks
Weaning	21-28 days	> 6 months
Estrus cycle	21 days	28 days

Minipig

- Relatively large and expensive
- Sensitive animal model
- Often kept in dog facilities
- Group or single housing
- Restricted feeding advisable
- Easy handling
- Well introduced: Ellegaard Göttingen minipig

In contrast to dogs ... - 1

- Increased heart rate does not lead to myonecrosis
- Non-steroidal anti-inflammatory drugs (NSAID) tolerated
- No arteriopathy when administered endothelin receptor agonists
- □ Female minipigs tolerate *anti-gestagens* and hormones with *estrogenic* activity

Minipigs

In contrast to dogs ... - 2

- Less vomiting (including vomiting with morphine-like drugs)
- Less histamine liberation e.g. with i.v. Tween and cremophor
- Better acceptance as experimental animals (not so much used as pets)
- Earlier sexual maturity

Comparability with humans

Organ	Similarities with humans, e.g.
GI tract	 Omnivore with comparable teeth Stomach and small intestine regarding e.g. pH, transit time, cell types and secretions
CV System	Heart and great vesselsStress-related diseases
Pulmonary system	 Useful model for respiratory distress syndrome Nasal and pulmonary structure
Urogenital system	 Kidney: size, number of lobes, and structure Bladder: good model for urinary incontinence
Eye	Highly developed

For metabolism and skin testing see later CV = cardiovascular

Metabolism

- High conformance with important human isoforms of cytochrome P450, particularly CYP 3A and CYP 2D6
- Acetylation is similar to that of man (dog is not)
- Glucuronidation is the predominant Phase II conjugation reaction
 Significant glutathione-S-transferase activity

Minipigs

Plasma elimination $t^{1}/_{2}$ (min)

Drug	Minipig	Dog	Human	References
Acetaminophen	62	107	120	Bailie et al. (1987)
Vancomycin	88	102	330	Bailie et al. (1987)
Antipyrine	63	78	726	Bailie et al. (1987)
Cefepime	876	65	1,080	Elkhaili et al. (1997)
				Gardner et al. (2001)
Cefpirome	774		1,070	Elkhaili et al. (1997)
Meropenem	53	45	50	Elkhaili et al. (1997)
				Harrison et al. (1989)
Meloxicam	6,270	144	84	Busch et al. (1998)
Moxifloxacin (po)	660	540	720	Siefert et al. (1999)
Moxifloxacin (iv)	342	514	780	Siefert et al. (1999)

C

Minipigs

Minipig - Dermal administration

Courtesy of A. Mahl, Novartis Pharma AG

Open application (Semi-)occlusive application

Similarities of porcine and human skin – 1

- General morphology e.g.
- □ Sparsely-haired
- Dermis of similar thickness with similar vascular and elastic fiber network
- □ Well defined *papillary and reticular* dermal zones
- Melanocytes (pigmentation) Langerhans cells (immunology)
- Rete ridge structure, *firmly attached* to underlying structures

Minipigs

Similarities of porcine and human skin – 2

- Physiology, e.g.
- Cell turnover
- Phase 1 and phase 2 metabolic activity
- □ *Immunological* reactivity
- Sensitivity to *ultraviolet* radiation
- Skin *penetration* of compounds
- Skin *repair* (wound healing)

Differences between porcine and human skin

- Ichthyoform skin surface, similar to thickened hyperkeratotic stratum corneum
- □ *Poor vascularization* of the cutaneous glands
- □ Absence of eccrine and apocrine glands
- Seasonal shedding of hair
- Differences in *skin microenvironment* (pH 6-7 compared to 5 in man)

Two valuable publications

- The utility of the minipig as an animal model in regulatory toxicology
 Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J
 J Pharmacol Toxicol Methods 2010 62(3):196-220
- The RETHINK project on minipigs in the toxicity testing of new medicines and chemicals: conclusions and recommendations Forster R, Bode G, Ellegaard L, van der Laan JW J Pharmacol Toxicol Methods 2010. 62(3): 236-42

Biology	Macaque monkey	Human
Weight	1.7-8 kg	60-110 kg
Life span	20-30 years	60-90 years
O ₂ consumption	0.6 ml/g/hr	0.4 ml/g/hr
Heart rate	220-320/min	60-90/min
BP	120/70 mmHg	120/80 mmHg
Puberty	2-3 (f), 4-5 (m) years	12-16 years
Gestation	160-180 days	40 weeks
Weaning	12-27 months	> 6 months
Estrus cycle	28 days	28 days

"Monkeys" – Classification

- □ Old World (OW) monkeys (132 species)
 - E.g. macaque (cynomolgus / rhesus monkey), and baboon
 - *Characteristics:* narrow nose with nostrils facing downwards, trichromatic vision, shorter tail, eight premolar teeth (humans: 10), thumb opposable (like man)
- □ New World (NW) monkeys (135 species)
 - E.g. marmosets and squirrel monkey
 - Characteristics: flat nose with side-facing nostrils, dichromatic vision, prehensile tails, twelve premolar teeth, mostly monogamous, thumb not opposable
- Great apes
 - Lesser apes: gibbon
 Greater apes : chimpanzees, gorilla, orangutan
 - Characteristics: no tail

"Monkeys" – Use (first decade of 2000)

- Genotypic and phenotypic resemblance to humans, especially regarding
 - o Immune system
 - o Kidney
 - o CV system
 - Etc.
- □ Numbers used/year:
 - EU (~ 500 mio inhabitants)
 - UK (~ 62 mio inhabitants)
 - USA (~ 310 mio inhabitants)

- ~ 10'000
- ~ 4'000
- ~ 55'000

Non-human primates (NHP) – 1

- Expensive, limited supply, potential quality issues
- Handling not that easy Special requirements for husbandry including environmental enrichment
- Animal protection issues in certain parts of the world
- Infectious diseases may be transmitted to humans

Non-human primates (NHP) – 2

- □ Smaller than dogs → less substance required (3 kg macaque vs. 10 kg dog)
- Sensitive to thalidomide and other drugs
- Biotechnology products: pharmacological responsiveness
- Placenta similar to humans (discoidal, hemomonochorial) in contrast to other species
- Sperm production (#/g testis/d) similar to rat and dog and approx. 7 times higher than humans

Advantages of marmosets

- □ Breed easier → Local supply and less transport stress (Japan?)
- Easier to obtain *sexually mature* animals
- Easier to handle
- On a *lower phylogenetic plane*, but higher than dogs (positive and negative!)
 Pain sensation probably similar to dogs
 Generally significantly *smaller:* a few hundred gr vs. a few kg (macaque)

Advantages of macaques

Sometimes

- Better express certain *receptors*
- Lack immune response against some compound

Most frequently used NHP: ~ 80 % in UK, > 60% of federally funded US research

→ More experience and more drugs tested of testing

Homology of CYP P450 enzyme

Species	P4503A homology with
	<u>human sequence)</u>
Human	100
Cynomolgus macaque	93
Marmoset	90
Dog	79
Minipig	74
Rat	73

Examples of drugs tested with NHP

- Testing for myopathy with HMG CoA reductase inhibitors
- **PPAR tumor induction (rodents)**
- Biotechnology products
- ACE inhibitor
- Proteinase inhibitors
- □ Parkinsonism: MPTP (neurotoxin) model

However, monkeys do not always predict – 1

- Clinical failure of AIDSVAX after successful results in chimpanzees
- Prediction of *isoprenaline doses for asthma* with NHP not better (Carson et al, 1971)
- Adverse drug reactions to hormone replacement therapy
 - Based on NHP experiments thought to protect against heart disease and stroke
 - Now known to increase the risk of these diseases and lead to breast cancer
- Amrinone (for heart failure) caused frequently severe and hemorrhages not predicted by NHP testing (Eason et al, 1987)
However, monkeys do not always predict – 2

- Teratology: NHP results correlate only in 50%
 Less than rats, hamsters and ferrets (Schardein, 1993;
 Bailey et al., 2005)
 Example: Aspirin is teratogenic in monkeys but not in humans
- Opren and Flosint (antiarthritis drugs) toxic for humans but without problems in NHPs (Eason et al, 1990) (Mann, 1984)
- Carbenoxalone (for gastric ulcers) associated heart failure not reproducible in NHPs (Eason et al, 1990)

Alternatives to NHP

- Dogs
- Ferret, but e.g.
 - Not much background data
 - Regulatory acceptance
 - Supply issues

Minipig, but

Higher test compound requirements

ALA.

Overview

- Use of animals
- Regulations regarding species selection
- Species similarities and differences
- Commonly used species in toxicology

Humans

- Ethnic variability
- Individual variability
- Adverse drug reactions in humans
- Extrapolation of animal data
- □ Species selection
- Conclusions

E5(R1) Ethnic Factors in the Acceptability of Foreign Clinical Data Main points

- Populations classified as Asians, Blacks and Caucasians
- □ Most drugs are ethnically not sensitive
- Assessment based on clinical bridging data not mandatory in every case, but may be required
- List of factors, which make it less likely that drug in question is sensitive to ethnic factors: see next slide

Factors indicating potential ethnic sensitivity

- □ *Nonlinear* pharmacokinetics
- Steep dose-response curve (pharmacology and toxicology)
- □ Narrow therapeutic window
- Strong metabolism, especially through a single pathway, thus increasing the potential for drug-drug interactions
- Metabolism by enzymes with known polymorphism (see later)

Further factors for potential ethnic sensitivity

- Pro-drugs
- □ High *variability* in bioavailability
- Low bioavailability, thus increased susceptibility to dietary influences
- Therapeutic indication with likely comedication
- Potential for abuse

Examples of genetic variations influencing drug effects

Mechanism	Example	Pharmacogenetic effect
Drug metabolism	Cytochrome P450 <i>enzymes,</i> e.g. CYP2D6	"Poor metabolizer" of importance for 25% of all drugs (see next slide)
Drug target	Serotonin (5- HT2A) <i>receptor</i>	Altered binding of the atypical antipsychotic clozapine
Disease pathway	Cholesterol esterase <i>transport</i> <i>protein</i> (CETP)	Atherosclerosis progression and response to the HMG-CoA inhibitor pravastatin

Kleyn PW, Vesell ES. Genetic variation as a guide to drug development Science. 1998; 281:1820–1821

Frequency of poor acetylators

Population	Median	Range
Black	51	42-65
Caucasian	58	52-62
Chinese	22	13-34
Japanese	10	7-12
Eskimo	6	5-21

Wood AJ, Zhou HH. Ethnic differences in drug disposition and responsiveness Clin Pharmacokinet 1991;20:350 –373

Ethnic polymorphism of hepatic metabolism

Enzyme		Metabolized drug	
CYP2C9		S-warfarin (see next slide)	
CYP2D6		Neuroleptics, tricyclic antidepressants, doxorubicin, codeine, propranolol, haloperidol	
CYP2A2		Theophylline, imipramine, clozapine, olanzapine	
N-acetyl- transferase	NAT-2	Isoniazid, hydralazid	
	NAT-1	p-Aminosalicyclic acid	

Warfarin requirements

Ethnic and individual variability

Response to antihypertensives

Decrement in blood pressure with antihypertensive drug such as ACE inhibitors, ARBs or β-blockers.

Sehgal AR

Overlap between whites and blacks in response to antihypertensive drugs Hypertension 2004 43(3): 566–572

Ethnic and individual variability

G6PD-deficiency: favism

Many drugs are contraindicated, among them certain

- Analgesics
- Antimalarial
- CV drugs
- Sulfonamides
- Antibiotics
- Anticancer drugs
- etc.

Was available under http://www.rialto.com/g6pd/table2.htm

publications about pharmacogenetics 1967–2007

C

Ethnic and individual variability

Pharmacogenetic trials

Percentage of pharmacogenetic trials (n=158) registered as of April 2011 with clinicaltrials.gov by disease process or condition Carlquist JF and Anderson JL. Discov Med 2011,11(60): 469-78

Individual vs. population response

- Variability of the response to a drug is likely to be similar, if not greater, between individuals of the same population, when compared to that between different populations
- Countries, which ask for proof of absence of ethnical differences more often than others: Japan, (South) Korea, Taiwan

Stratified (individualized) medicine

Practiced since many years

- Pharmacogenetic investigations
- Consideration of non-genetic factors including e.g.
 - Age
 - Comorbidities
 - Concomitant medications
 - etc.

- Which drug to prescribe
- Dose adjustments

Overview

- Use of animals
- Regulations regarding species selection
- Species similarities and differences
- Commonly used species in toxicology
- Humans
- Adverse drug reactions in humans
 - General
 - Interactions
 - Risk factors
- Extrapolation of animal data
- Species selection
- Conclusions

General

Frequency and grading of ADRs

In/out- patients	ADR grade	# of studies	Total patients studied	Incidence of ADRs %	95% confidence limits
Admission due to ADR	Serious	21	28 017	4.7	3.1-6.2
	Fatal	6	17 753	0.13	0.04-0.21
ADRs in hospital	Total	18	34 463	10.9	7.9-13.9
	Serious	12	22 502	2.1	1.9-2.3
	Fatal	10	28 872	0.19	0.13-0.26

Lazarou et al. JAMA. 1998;279:1200-1205

Costs associated with ADRs in the USA

- □ Well above 100 bio US \$ per year
- □ Patients with ADR: on average *doubling* of
 - Mean length of stay
 - o Cost
 - Mortality
- □ 69% of *fatal ADRs* are caused by
 - Anticancer drugs
 - Cardiovascular drugs
 - CNS drugs

Why development safety <u>sometimes</u> fails?

- Most drugs approved with data of an average of 1500 patients
- Some drugs have rare toxicity profiles (bromfenac hepatotoxicity 1 in 20,000 patients)
 - Data of > 100,000 patients needed to generate a signal
 - \rightarrow Importance of post-marketing surveillance

General

ADRs would often be preventable – 1

Prescription habits in the USA

- Two-thirds of patient visits result in a prescription
- 2.8 bio outpatient prescriptions (10 per US citizen!) in 2000

ADRs increase exponentially with 4 or more medications

Schappert SM. Vital Health Stat. 1999;13(143). 2000 community pharmacy results. 2001 Jacubeit T et al. Agents Actions 1990; 29:117–125

Risk factors

ADR as f (number of drugs)

May FE. Clin Pharmacol Ther 1977; 22:322-328

co-administrated drugs

General

ADRs would often be preventable – 2

> 80% of ADRs causing admission or occurring in hospital are dose-related (type A ARDs)

➔ Predictable (potentially) avoidable

Adverse drug reactions in elderly patients - P A Routledge, M S O'Mahony, K W Woodhous Br J Clin Pharmacol 2004, 57(2): 121–126

Mechanisms of "idiosyncratic" (Typ B) ADR

- Receptor abnormality: malignant hyperthermia with general anesthetics
- Biological variation
 - Primaquine induced hemolysis in patients deficient in *glucose* 6-phosphate dehydrogenase
 - Isoniazid-induced peripheral neuropathy in people deficient in N-acetyl transferase ("slow acetylators")
- Certain types of drug-drug interactions: increased incidence of hepatitis of isoniazid in combination with rifampicin
- Multifactorial pathogenesis: halothane hepatitis
- Pharmaceutical "variation": eosinophilia-myalgia syndrome with *"impurities"* in L-tryptophan (New Mexico 1989)
- Immunological reaction: see next slide

134

Immunologic ARD (idiosyncratic)

Туре	Example
Type I reaction (IgE-mediated)	Anaphylaxis from lactam antibiotic
Type II reaction (cytotoxic)	Hemolytic anemia from penicillin
Type III reaction (immune complex)	Serum sickness from antithymocyte globulin
Type IV reaction (delayed, cell- mediated)	Contact dermatitis from topical antihistamine
Specific T-cell activation	Morbilliform rash from sulfonamides
Stevens-Johnson syndrome	Toxic epidermal necrolysis
Fas/Fas ligand-induced apoptosis	Drug-induced lupus-like syndrome
Other	Anticonvulsant hypersensitivity

C

Animal species

Most frequent: skin rash

- 90% due to drug hypersensitivity
- Mostly transient, resolving in 6-9 days
- Rarely severe –1/10'000 patients
- Not predictable from conventional animal studies

Preventable Adverse Drug Reactions: A Focus on Drug Interactions - Learning http://www.fda.gov/Drugs/DevelopmentApprovalP rocess/DevelopmentResources/DrugInteractions Labeling/ucm110632.htm

Interactions

- 1. Interactions can occur already before administration
- 2. PK interactions
 - a. GI tract
 - b. Plasma
 - c. Liver function
 - d. Kidney function

3. PD interactions in the target organ

1. Interactions before administration

- Phenytoin precipitates in dextrose solutions (e.g. D5W)
- Amphotericin precipitates in saline
- Gentamicin is physically/chemically incompatible with most beta-lactams, resulting in loss of antibiotic effect

2a. Interaction in the GI Tract

Agent	Effect
Some milk products, oral iron preparations, antacids, sucralfate	<i>Block absorption</i> of quinolones, tetracycline, and azithromycin
Omeprazole, lanso- prazole, H2-antagonists	Reduce absorption of ketoconazole, delavirdine
Didanosine (given as a buffered tablet)	Reduces absorption of ketoconazole
Cholestyramine	<i>Binds</i> raloxifene, thyroid hormone, digoxin

Preventable Adverse Drug Reactions: A Focus on Drug Interactions - Learning http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm110632.htm

2b. Interactions in the plasma

Some drugs can displace other drugs off proteins in the plasma \rightarrow Increased amount of free drug Generally only transient effect \rightarrow Increased rate of elimination and normalization of blood levels of free drug

Preventable Adverse Drug Reactions: A Focus on Drug Interactions - Learning http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm110632.htm

2c. Interactions due to hepatic metabolism

- Nearly always due to interactions involving *Phase I enzymes* (mainly P450), rather than Phase II
- 60% of drugs frequently cited in connection with ADR are metabolized by enzymes with known genetic variations

Preventable Adverse Drug Reactions: A Focus on Drug Interactions - Learning http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm110632.htm

Adverse drug reactions

Interactions

2c. Drug-drug interactions affecting e.g. lipidlowering drugs (competition for enzymes)

Primary drug (PD)	Concomitant drug	Increase in AUC of PD
Simvastatin	Itraconazol	5 - 20 x
Lovastatin	Itraconazol, cyclosporine	5 - 20 x
Atorvastatin	Cyclosporine	6 – 15 x
Fluvastatin	Cyclosporine	2 - 4 x
Cerivastatin	Gemfibrozil	4 - 6 x
Pravastatin	Cyclosporine	5 – 10 x
Rosuvastatin	Cyclosporine	5 – 10 x
Pitavastatin	Cyclosporine	5 x
Neuwanan Dilatal Clin Dharmagal Thar 80/6): 565-591 (2006)		

Neuvonen PJ et al, Clin Pharmacol Ther 80(6): 565–581 (2006)

2d. Affected by decreased renal clearance

Drug class	Representative medications
ACE inhibitors	Donepezil, rivastigmine
Analgesics	Acetaminophen, NSAIDs, morphine, fentanyl
Antibiotics	Aminoglycosides, fluroquinolones, carbapenem, b-lactams, cephalosporins, penicillins, sulphonamides, nitrofurantoin
Antivirals	Amantidine, oseltamivir, famicyclovir, acyclovir
CV drugs	Beta blockers, diuretics, digoxin, procainamide
Diabetic drugs	Metformin, chlorpropamide, tolazamide, glyburide
Other drugs	H2 antagonists, lithium, antipsychotics, venlafaxine, allopurinol, gabapentin

Was available under http://www.fmpe.org/en/documents/doc_aids/aid_kidney_disease_apd4.pdf

3. Pharmacodynamic (PD) interactions

E.g.

- Overlapping (additive) toxicities, e.g. ethanol and benzodiazepines
- Antagonistic effects, e.g. anticholinergic medications such as amitriptyline (monoamine re-uptake inhibitor) and acetylcholinesterase inhibitor

Deliberate interactions:

- Synergistic actions of antibiotics: penicillins gentamicin
- Parkinson therapy: levodopa carbidopa
- Hypertension treatment: ACE inhibitors thiazides
- Asthma bronchiale therapy: salbutamol ipratropium

Drug - food or herbal interactions – 1

- Calcium in milk products chelates tetracyclines
- Vitamin K-containing foods antagonizes anticoagulation by Warfarin
- Grapefruit juice contains a bioflavonoid that inhibits CYP3A and blocks the metabolism of many drugs

Preventable Adverse Drug Reactions: A Focus on Drug Interactions - Learning <u>http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm110632.htm</u> Accessed in January 2021

Drug - food or herbal interactions – 2

St. John's wort (hypericum perforatum), used e.g. as antidepressant, interacts with Indinavir Cyclosporin Digoxin Other drugs by induction of CYT P450 and/or drug transporters Preventable Adverse Drug Reactions: A Focus on Drug Interactions -Learning-

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentR esources/DrugInteractionsLabeling/ucm110632.htm (accessed 01/21)

Risk factors for ADR - General

- □ Age (children and elderly)
- Gender (females)
- Environment, diet, drinking habits, etc.
- □ Multiple medications, medical practice
- Multiple co-morbid conditions including endorgan dysfunction
- Prior history of ADRs
- Dose and duration of exposure
- Genetic predisposition

Modifying factors

Personal susceptibility

Exaggerated response, e.g. 10 mg of morphine > up to 10 - 12 hrs. of sleep (generally only 4 - 6 hrs.)

Effect of climate

- o In hot humid climate metabolism is depressed
- Purgatives act better during summer
- o Diuretics act better during winter

Effect of altitude

Increasing height reduces metabolism

Racial Differences

- Castor oil: not purgative to Chinese
- Ephedrine: no dilatation of pupil in black people

Learning module on DDI

FDA

Preventable Adverse Drug Reactions: A Focus on Drug Interactions

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm110632.htm (accessed in January 2021)

Overview

- Use of animals
- Regulations regarding species selection
- Species similarities and differences
- Commonly used species in toxicology
- Humans
- Adverse drug reactions in humans
- Extrapolation of animal data including risk assessment
- □ Species selection
- Conclusions

For risk assessment

Review: Successful Drug Development Despite Adverse Preclinical Findings

Part 1: Processes to Address Issues and Most Important Findings

Robert A. Ettlin, Junji Kuroda, Stephanie Plassmann, and David E. Prentice

J Toxicol Pathol 2010; 23: 189–211

Part 2: Examples

Robert A. Ettlin, Junji Kuroda, Stephanie Plassmann, Makoto Hayashi, and David E. Prentice *J Toxicol Pathol 2010;* **23**: 213–234

http://www.jstage.jst.go.jp/browse/tox/23/4/_contents

Humans

Extrapolation of animal data

Concordance of findings with drugs in humans and animals – 1

150 compounds 12 companies Analyzed by ILSI

Olson H et al. Regul Toxicol Pharmacol 32, 56-67, 2000

Humans

Extrapolation of animal data

Concordance of findings with drugs in humans and animals – 2

e

Extrapolation between species

In view of the fact that human beings react partly very differently to drugs:

Differences between individual human beings

are probably in a similar order of magnitude

as the differences between test animal species and humans

Overview

- Use of animals
- Regulations regarding species selection
- Species similarities and differences
- Commonly used species in toxicology
- Humans
- Adverse drug reactions in humans
- Extrapolation of animal data
- Species selection
 - General
 - Non-human primates
 - Examples: dermal and inhalation studies
- Conclusions

Animals can serve as predictive models

- Mechanisms of chemical toxicity are largely identical in humans and animals
- Agents found toxic in animals are generally not knowingly given to humans
 - → Biased data samples to investigate the effectiveness of animal testing

Fishing for the right species

Curteousy of Andy Meier, Biel-Benken

Selection of animal species

- The selection of an appropriate species is key to accurate prediction of safety in humans. The theoretical basis is available, but possibly more often quoted than adhered to
- □ It is virtually *impossible to give specific rules*
- Considerations depend on the specific research project and its objectives
- To select a species means to understand and weigh advantages and disadvantages of the various species (an issue of trade-offs)

SELECTION OF ANIMAL MODELS Research Animal Methods - VSC 443/543 - Fall 2009 Michael S. Rand, DVM, Assistant Director, University Animal Care - University of Arizona – Tucson - Lecture date: 9/18/2009 Was available under <u>http://www.uac.arizona.edu/VSC443/animalmodels/animalmodels09.html</u>

Factors to be considered – 1

- What needs to be shown? For "screening" wider range of appropriate species
- Similarity to humans regarding
 - Anatomy and physiology
 - Age equivalence
 - PD and TK (ADME); influences also compound requirements
 - PD response and tissue binding
 - Etc.

General

Factors to be considered – 2

Economics of the species selection

- Purchasing costs
- Husbandry costs, influenced also by space / regulatory requirements
- Compound requirement based on
 - Body size
 - Test group size
 - ADME considerations
 - Etc.

Factors to be considered – 3

Practical aspects

- Availability of species
- Requirements for husbandry
- Life span
- Ease of handling
- Ability to make pertinent measurements in a meaningful way, e.g. size / numbers of samples, availability of methods, etc.
- Spontaneous diseases including those transmissible to humans

General

Factors to be considered – 4

Experience

- Historical data
- Handling experience
- Experience with animal model
- Data on compounds of the same chemical and therapeutic class
- Ethical considerations
- Regulatory acceptance
- □ (Habit, personal preferences)

Data for non-rodent species selection – 1

Ideally

- Exploratory toxicity data from the rodents (e.g. rats)
- PD activity in non-rodent species
- Cardiovascular telemetry data (including electrocardiogram ECG) of different species after low single doses
- Information from *precursor* compounds (if applicable)

After G Bode et al. J Pharmacol Toxicol Methods 2010, 62: 196-220

Data for non-rodent species selection – 2

□ Some ADME information, including e.g.

- In vivo p.o./i.v. plasma profiles of active compound in rats, dogs and/or monkeys and minipigs
- In vitro metabolism in liver microsomes and/or hepatocytes of rats, dogs, minipigs, non-human primates and men
- Early assessment of metabolite(s) if identified as major contributors to drug/toxicity action

After G Bode et al. J Pharmacol Toxicol Methods 2010, 62: 196-220

Reason for choosing NHP

- With conventional studies progression in clinics was questionable (see next slide)
- Testing in monkeys has allowed to *terminate development* before exposing humans (see next slide)
- □ *Scientific* reasons, e.g.
 - No antigenicity of test drug
 - Similarity of receptors to those of humans
- **Experience** with same class of compounds in NHP
- *Economical reasons:* amount of compound needed
- Caution: avoid risk that choosing another species may later prove unacceptable to the regulators resulting in costly delays
- To "please" the regulator

After 'Use of non-human primates in regulatory toxicology - Was available under http://www.boyd-group.demon.co.uk/

Examples of benefits of NHP

- Anti-schizophrenic drug produced *cataracts* in dogs. NHP without eye toxicity Clinical use showed better efficacy and tolerance than previous treatment options (without eye ADR)
- □ Safety evaluation of a cholesterol-lowering compound in marmosets showed *muscle damage* → compound dropped The marmoset was chosen for its lipoprotein profile being similar to that of humans

However, monkeys are not always better than other non-rodents or rodents (see earlier)!

Modified after Use of non-human primates in regulatory toxicology – Was available under <u>http://www.boyd-group.demon.co.uk/</u>

Decision tree non-rodent species

Species	Limitations	Comments
(Ferret)	Availability Experience	Currently no option
Minipig	Size (Background data)	To avoid primates
Dog	Scientific suitability Size (occasionally)	Primary species
Marmoset	Sampling Monitoring	On lower phylogenetic plane than macaque
Macaque	Last option	Up to 10 times heavier than marmosets

According to 86/609 EEC Revision Nov. 5, 2008 "Protection of animals"

Examples for species selection

Dermal studies

Comparison of anatomical characteristics of the skin for several laboratory animals John H Grabau , Lily Dong, 1995

Was available under http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA325862&Location=U2&doc=GetTRDoc.pdf

Inhalation studies

The relevance of animal models for aerosol studies Phalen RF, Oldham MJ, Wolff RK J Aerosol Med Pulm Drug Deliv 2008, 21(1): 113-24

Examples - Dermal

Dermal studies

In vitro skin permeability to ionic and covalent substances in aqueous solution and organic solutes

Human < pig < guinea pig < rat < rabbit

Physical functions of skin. R. T. Tregear. Academic Press, London, New York, 1966

Skin including epidermis thickness

Mouse – 13 μm (rat 21.7 μm)

Pig – 52 μm

Human – 70 µm

P

Inhalation studies

- □ *Mouth* (humans, 10µ filtration) versus *nose* (rodents, 3µ filtration) breathers
- Anatomy
 - Number of branchings in the respiratory tree (humans: 35, rodents:?)
 - Respiratory bronchioles / submucosal glands in intrapulmonary bronchi:
 - Extensive / present in dogs, rhesus and humans
 - Minimal / absent in rodents and hamsters

Overview

- Use of animals
- Regulations regarding species selection
- Species similarities and differences
- Commonly used species in toxicology
- Humans
- Adverse drug reactions in humans
- Extrapolation of animal data
- Species selection
- Conclusions
 - With a look into the future

Animal models

- Have proven their value to (generally) protect human beings from serious adverse drug effects
- Significant progress was made in understanding the strengths (similarities) and weaknesses (differences) of animal testing for predicting adverse effects in humans

Animal species used in regulatory toxicology

(rat, mouse)	
L	
	Monkey, minipig
(especially rat) ent (especially	Monkey, minipig
: rat, mouse(?)	
	Rat Non-rodent species?
bit	(Mouse, hamster, monkey)
guinea pig	Rat
	(especially rat) ent (especially s: rat, mouse(?) bit guinea pig

C

A look into the future – 1

- We will continue using *animals*, but we will have to continue increasing our understanding of their limitations in connection with certain safety issues
- *Rodents* will remain important test animals
- Minipigs (micropigs) will increasingly been used as alternative non-rodent species to dogs
- There is currently no indication that *ferrets, rabbits or guinea pigs* might become further important alternative non-rodent species in general toxicology

A look into the future – 2

□ Monkeys will

- Not replace dogs or minipigs in general toxicity testing
- Play a role in early toxicity testing for early entry into man with small amounts of drugs
- Remain important for special issues such as
 - Clarification of questions
 - Increasing confidence in the safety of certain drug candidates

A look into the future – 3

- Pharmaco-/toxicogenomics will increase in importance
- Toxicologists must be increasingly prepared to draw the attention of medical personnel to potential adverse effects in humans including limitations on dosing and drug-drug interactions (bad example: statin myopathy)

Or in other words...

Not much will move!

Because we are relatively confident with our current animal models and have experience with them

THANK YOU

Curteousy of Andy Meier, Biel-Benken

Appendix

See e.g.

Animal Models in Toxicology, 2nd edition, 2007, Shayne C. Gad (editor) Taylor & Francis Group, Boca Raton London New York, p. 222

Spontaneous lesions in beagle dogs used in toxicity studies. Morishima H, Nonoyama T, Sasaki S, Miyajima H. Jikken Dobutsu. 1990 Apr;39(2):239-48.

Examples of non-neoplastic lesions

Basic change	Organ	Pathology
Degeneration	Kidney	Glomerulonephropathy
	Nerve	Radiculoneuropathy
	Testis / ovary	Atrophy / cysts
	Liver	Steatosis, microcystic degeneration, telangiectasia
Inflammation	Foot	Pododermatitis/arthritis
	Tail	Dermatitis/folliculitis
	Pancreas	Pancreatitis
Proliferation	Liver	Biliary proliferation Altered cell foci/nodules
	Adrenal	Altered cell foci/nodules
	Mammary	Hyperplasia

Examples of neoplastic lesions

- Adrenal pheochromocytoma (especially in males)
- □ Mammary gland fibroadenoma (especially CD and Wist rats); subcutaneous tumors
- Pancreatic islet cell adenoma
- □ Pituitary gland adenoma
- Testicular interstitial cell tumors (very high incidence in Fischer rats)
- Thyroid C-cell adenoma

Examples of non-neoplastic lesions – 1

- Various degenerative lesions including e.g. cardiomyopathy, cardiac and cerebral mineralization, nephropathy
- □ Amyloidosis
- □ Angiectasis, polyarteritis
- Salivary gland: atrophy, hyperplasia, basophilic foci, cyst
- Ovary, uterus: cysts, hyperplastic changes
- □ Spleen, liver: extramedullary hematopoiesis
- Lymphoid organs: hyperplasia

Examples of non-neoplastic lesions – 2

- Liver: fatty change, hemosiderosis, microgranulomas, karyo/cytomegaly, nuclear/cellular inclusions, bile duct hyperplasia, oval cell hyperplasia, "fibrosis",
 Prostate: foci of chronic inflammation
 Lungs: alveolar hyperplasia, inflammatory foci
 Eye: retinal atrophy
- Etc.

Examples of neoplastic lesions

- □ Bronchiolar/alveolar adenoma/carcinoma
- □ Lymphoreticular tumors
- Pituitary and various other endocrine organs: hyperplasia and adenomas
- Uterine polyps and other uterine tumors
- Mammary gland carcinomas
- Hepatocellular hyperplasia and tumors
- □ Vascular tumors
- Harderian gland adenomas
- Etc.

Examples of non-neoplastic lesions

- Amyloidosis
- Calcinosis (connective tissue)
- Multifocal retinal dysplasia
- Polycystic ovaries
- Enteritis (wet tail disease)
- Pneumonia
- Lymphadenitis

Spontaneous tumors are rel. infrequent

- □ Adrenal adenoma/carcinoma (up to 13%)
- □ Lymphoreticular neoplasm (~3%)
- Endometrial polyp, carcinoma (each ~3%)
- □ Adrenal carcinoma (~3%)
- Islet cell adenoma (~3%)
- Papilloma of stomach/vagina (each ~2%)
- Thyroid carcinoma (~2%)

- Susceptible to
- Overgrown teeth
- □ Scurvy (deficiency of vitamin C)
- Enteritis, often with multifocal inflammatory lesions in the liver
- Infections
 - Lungs, often with alveolar adenomatosis
 - Salivary gland: cytomegaly virus infection
 - Secondary lesions e.g. in the spleen

Anorexia

Guinea pigs

- Heart: interstitial lymphocytic myocarditis
- Lungs: (papillary) adenomas
- Pancreas: acinar cell hyperplasia/ adenoma
- Kidney: chronic interstitial nephritis
- Urinary bladder: cystitis
- Ovary: cysts (also para-ovarian cysts)
- Dystocia with dead fetus frequent
- Myopathy

- Lymphocytic choriomeningitis
- Pancreas
 - Diabetes mellitus (virus infection?)
 - Islet cell adenoma
- Adrenal: cortical hyperplastic nodules or adenomas
- Various skin lesions including alopecia and dermatitis
- Mammary gland: mastitis. Tumors are relatively frequent
- Etc.

Rabbits

- Cystic mammary gland hyperplasia often with pituitary adenomas and uterine hyperplasia/epithelial tumors
- □ Intestinal tract:
 - Plasma cell infiltrations
 - Enteritis (often infectious)
- Liver: cytoplasmic vacuolation
- Rhinitis
- Uterine adenocarcinoma with lung metastases

Rabbits

- Kidney: lymphoid and macrophage infiltrations
- □ Urine: cloudiness is normal (crystals)
- Venereal diseases
- Oviduct cysts
- CV system: interstitial myocarditis, arteriosclerosis
- Lymph nodes: lymphosarcoma
 Etc.

- Infections: Prone for influenza and pneumonitis (can be used as model for influenza and influenza vaccine testing)
- Chronic interstitial nephritis and urinary tract infections
- □ Adrenal cortex: hyperplasia, adenoma and carcinoma → may lead in middle-aged to older ferrets to endocrinopathy with high estrogen (alopecia, reproductive and behavioral signs)
 □ Pancreas: tumorous islet cells
- Lymphosarcoma (retrovirus-associated?)

Ferrets

- Chordoma especially at the tip of the tail
- Skin: sebaceous epithelioma and mast cell tumor
- Estrus-associated aplastic anemia. Can be lethal because of hemorrhage
- Cardiomyopathy with enlarged heart and congestive heart failure
- □ Prone to stress-related gastric ulcers
- Splenomegaly of unknown cause common in middle-aged to older ferrets

- Kidney: calcium deposition, tubular vacuolization, inflammatory foci including interstitial nephritis and pyelonephritis
- Cardiovascular system: vacuolation of Purkinje fibers in the heart, peri/polyarteritis, telangiectasia in various organs
- □ Thymus: cortical atrophy
- □ Testis: focal atrophy
- Prostate: prostatitis
- CNS: hydrocephalus, chronic focal meningitis

Dogs

- Mononuclear cell infiltration in various organs including liver and lungs, partly with microgranuloma formation
- Adrenal gland: vacuolization of the zona glomerulosa
- Stomach: gastritis, microscopic mucosal mineralization
- Intestines: enteritis and colitis
- Liver: hepatocellular lipidosis

- Pancreas: Ovoid, acidophilic intracytoplasmic inclusions in acinar cells
- Spleen: Gandy-Gamna bodies (= siderofibrotic nodules = firm, nodular discolorations on or within the capsule)
- Cysts in pituitary, thyroid and parathyroid (mostly embryonic remnants)
- Thyroid: idiopathic follicular atrophy and lymphocytic thyroiditis
- Etc.

- Spontaneous pathology relatively rare
- Arteritis in various organs
- □ Tongue myositis
- Gastric/duodenal mucosal erosions, inflammation in various parts of the intestinal tract
- Chronic cholecystitis, mononuclear infiltrates in the liver
- Inflammation, hemorrhage and fibrosis of the thyroid

- Degeneration of bone marrow fat cells, hemorrhage in various hematopoietic and lymphoid organs
- Inflammatory foci in skin with edema and hyper/parakeratosis
- Focal skeletal myonecrosis
- Hypoplasia/atrophy of seminiferous tubules with (relative) LC hyperplasia
- Lung: granuloma, macrophages, mineralization
- Renal tubular basophilia, inflammation, mineralization and interstitial fibrosis
- Hemorrhagic syndrome of unknown origin

Ftc

- Mineralization in the brain (corpora amylacea)
- Protein inclusions in transitional epithelium (cytokeratin) of the urinary tract
- Macrophages in intestinal villi
- Foci of mononuclear cells e.g. in thyroid, intestine, kidney and liver
- Lymphoid infiltrates in salivary glands, brain, prostate, and other tissues
- Degenerative and in inflammatory changes in liver, kidneys and heart

- Multinucleated cells in renal pelvis
- Mineralization of adrenal cortico-medullary zone, ovary, and renal papilla
- Herniation of intestinal glands into GALT
- Reticulo-endothelial hyperplasia in spleen
- Lymphoid hyperplasia of the spleen and lymph nodes
- Involution of the thymus
- Extra-medullary hematopoiesis
- Various infections and parasitic diseases

- Neoplasic changes uncommon (monkeys in toxicity studies generally too young)
 - B-cell lymphoma in case of
 - Infection with SIV: simian immunodeficiency virus, etc.
 - Immunodepressed animals
- In older animals
 - Uterine leiomyoma
 - Intestinal carcinoma
- Etc.